3.516 \(\int \frac{1}{x^3 (1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=170 \[ \frac{2}{3 x^2 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{7 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{6 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{7 \left (x^3+1\right )}{6 x^2 \sqrt{x+1} \sqrt{x^2-x+1}} \]

[Out]

2/(3*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (7*(1 + x^3))/(6*x^2*Sqrt[1 + x]*Sqrt[
1 - x + x^2]) - (7*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3]
 + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])
/(6*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.159164, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174 \[ \frac{2}{3 x^2 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{7 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{6 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{7 \left (x^3+1\right )}{6 x^2 \sqrt{x+1} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^3*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

2/(3*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (7*(1 + x^3))/(6*x^2*Sqrt[1 + x]*Sqrt[
1 - x + x^2]) - (7*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3]
 + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])
/(6*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 12.2867, size = 158, normalized size = 0.93 \[ - \frac{7 \cdot 3^{\frac{3}{4}} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{\sqrt{3} + 2} \left (x + 1\right )^{\frac{3}{2}} \sqrt{x^{2} - x + 1} F\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{18 \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x^{3} + 1\right )} - \frac{7 \sqrt{x + 1} \sqrt{x^{2} - x + 1}}{6 x^{2}} + \frac{2 \sqrt{x + 1} \sqrt{x^{2} - x + 1}}{3 x^{2} \left (x^{3} + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**3/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

-7*3**(3/4)*sqrt((x**2 - x + 1)/(x + 1 + sqrt(3))**2)*sqrt(sqrt(3) + 2)*(x + 1)*
*(3/2)*sqrt(x**2 - x + 1)*elliptic_f(asin((x - sqrt(3) + 1)/(x + 1 + sqrt(3))),
-7 - 4*sqrt(3))/(18*sqrt((x + 1)/(x + 1 + sqrt(3))**2)*(x**3 + 1)) - 7*sqrt(x +
1)*sqrt(x**2 - x + 1)/(6*x**2) + 2*sqrt(x + 1)*sqrt(x**2 - x + 1)/(3*x**2*(x**3
+ 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.675265, size = 170, normalized size = 1. \[ \frac{-\frac{6 \left (7 x^3+3\right )}{x^2 \sqrt{x+1}}-\frac{7 i (x+1) \sqrt{1+\frac{6 i}{\left (\sqrt{3}-3 i\right ) (x+1)}} \sqrt{6-\frac{36 i}{\left (\sqrt{3}+3 i\right ) (x+1)}} F\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{-\frac{i}{\sqrt{3}+3 i}}}}{36 \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^3*(1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

((-6*(3 + 7*x^3))/(x^2*Sqrt[1 + x]) - ((7*I)*(1 + x)*Sqrt[1 + (6*I)/((-3*I + Sqr
t[3])*(1 + x))]*Sqrt[6 - (36*I)/((3*I + Sqrt[3])*(1 + x))]*EllipticF[I*ArcSinh[S
qrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt
[(-I)/(3*I + Sqrt[3])])/(36*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Maple [A]  time = 0.045, size = 259, normalized size = 1.5 \[{\frac{1}{ \left ( 12\,{x}^{3}+12 \right ){x}^{2}}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( 7\,i{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}{x}^{2}\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}-21\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ){x}^{2}-14\,{x}^{3}-6 \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^3/(1+x)^(3/2)/(x^2-x+1)^(3/2),x)

[Out]

1/12*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(7*I*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),
(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*x^2*(-2*(1+x)/(-3+I*3^(1/2)))^(1/
2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1
/2)-21*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*(
(I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2
),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x^2-14*x^3-6)/(x^3+1)/x^2

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3),x, algorithm="maxima")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{{\left (x^{6} + x^{3}\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3),x, algorithm="fricas")

[Out]

integral(1/((x^6 + x^3)*sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{x^{3} \left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**3/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(1/(x**3*(x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3),x, algorithm="giac")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)*x^3), x)